skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maniatty, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microstructure evolution modeling using finite element crystal plasticity (FECP), Monte- Carlo (MC), and phase field (PF) methods are being used to simulate microstructure evolution in Ti-6Al-4V under thermomechanical loading conditions. FECP is used to simulate deformation induced evolution of the microstructure and compute heterogeneous stored energy providing additional source of energy to MC and PF models. The MC grain growth model, calibrated using literature and experimental data, is used to simulate α+𝛽 grain growth. A multi-phase field, augmented with crystallographic symmetry and orientation relationship between α-𝛽, is employed to model simultaneous evolution and growth of all twelve α-variants in 3D. The influence of transformation and coherency strain energy on α-variant selection is studied by coupling the model with the Khachaturyan-Shatalov formalism for elastic strain calculation. This FECP/MC/PF suite will be able to simulate evolution of grains in the microstructure and within individual 𝛽- grains during typical thermomechanical processing conditions. 
    more » « less